Abstract Learning via Demodulation in a Deep Neural Network

نویسنده

  • Andrew J. R. Simpson
چکیده

Learning via Demodulation in a Deep Neural Network Andrew J.R. Simpson #1 # Centre for vision, speech and signal processing (CVSSP), University of Surrey, Guildford, Surrey, UK 1 [email protected] Abstract—Inspired by the brain, deep neural networks (DNN) are thought to learn abstract representations through their hierarchical architecture. However, at present, how this happens is not well understood. Here, we demonstrate that DNN learn abstract representations by a process of demodulation. We introduce a biased sigmoid activation function and use it to show that DNN learn and perform better when optimized for demodulation. Our findings constitute the first unambiguous evidence that DNN perform abstract learning in practical use. Our findings may also explain abstract learning in the human brain.Inspired by the brain, deep neural networks (DNN) are thought to learn abstract representations through their hierarchical architecture. However, at present, how this happens is not well understood. Here, we demonstrate that DNN learn abstract representations by a process of demodulation. We introduce a biased sigmoid activation function and use it to show that DNN learn and perform better when optimized for demodulation. Our findings constitute the first unambiguous evidence that DNN perform abstract learning in practical use. Our findings may also explain abstract learning in the human brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

End-to-End Radio Traffic Sequence Recognition with Deep Recurrent Neural Networks

We investigate sequence machine learning techniques on raw radio signal time-series data. By applying deep recurrent neural networks we learn to discriminate between several application layer traffic types on top of a constant envelope modulation without using an expert demodulation algorithm. We show that complex protocol sequences can be learned and used for both classification and generation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1502.04042  شماره 

صفحات  -

تاریخ انتشار 2015